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As has been recently demonstrated [1] a system of 1ntegrodif?z;zﬁfi"if"‘“‘*“‘-

equations governs the evolution of the components of the electric displacement
field in a simple class of rigid holohedral isotropic dielectrics of the type

introduced by Toupin and Rivlin in [2]. More specifically, we consider the

following situation: Let ! E_R3 be a bounded region filled with a noncond-

ucting material dielectric substance and assume that 9{, the boundary of 8,

is smooth enough to admit of applications of the divergence theorem. Denote

by E,B,P and D, respectively, the electric field vector, the magnetic flux

density, the polarization vector, and the electric displacement vector in 9

the fields E and D are related by D = EOE.+ P, ed > G a physical constant.
U_l

By defining, in the usual manner, the magnetic intensity H = B, where

My > 0 satisfies € B c_2 (c = speed of light in a vacuum) the differential

. 5 i
forms of Maxwell's equations in a Lorentz reference frame (x ,t) become
q

2 + 1E=0,di 0
Bt cur div B

-

(1.1) 3D
curl H - 57 = 0, div D = 0

provided that the densities of free current and free charge vanish in 1, the

N

magnetization is zero in , and the medium is nondeformable (rigid dielectric).

—

To obtain a determinate set of equations for the fields which appear in

——

Maxwell's equations a set of constitutive relations among these fields must

be specified and in the theory of rigid nonconducting material dielectrics

N mpewsa—

there exists a hierachy of such constitutive assumptions of increasing complex-

The simplest constitutive assumption possible corresponds to the situation

, ity.
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where the dielectric is a vacuum so that I = C and D = coE, H ='u;1 B. 1In

[3] and [4] this author has treated the evolution equations associated with
the Maxwell-Hopkinson Dielectric in which the constitutive relation between

D and E assumes the form

D(x,t) = €E(x,t) + ffw ¢(t-DE(x,T)d1, € > 0

(x,t) ¢ Q@ x (==,T), T>0,
with |¢| a monotonically decreasing function.The Maxwell-Hopkinson theory re-
tains the simple relation H = u;l B between the magnetic intensity and magnetic
flux density and thus does not take into account the possible influences of
magnetic memory effects. Constitutive relations generalizing those of
Maxwell-Hopkinson in several directions, and allowing for an understanding of
phenomena such as the Faraday effect in dielectrics, were put forth in 1960 by
Toupin and Rivlin (op.cit.). One such set of constitutive equations, for a
dielectric with holohedral symmetry (i.e., a dielectric which admits the full
orthogonal group as its group of material symmetry transformations) has the

form

n
px,t) = I aEY(x,t) + S #(t-DE(x, Va7

j=o

3
(1.2.)

: & ats t
H(x,t) = I bj_lg (x,t) + /__ ¥ (t-1)B(x,Td1
j=o
where the superscripts denote differentiation with respect to the time para-

meter and the coefficients aj,bj are constants; whereas equations (3.2) still

effect an priori separation of electric and magnetic effects thev now allow

for consideration of dielectric materials exhibiting magnetic memory and may




be viewed as a linearized version of a more general theory introduced by
Volterra in 1912 [5] to treat the case where the dielectric substance is
anisotropic, nonlinear, and magnetized, viz:

t

D(x,t) = e*E(x,t) + D(E(x,T))
t

B(x,t) = uH(x,t) + B(H(x,T)

=00

(1.3)

where ¢,u are constant second~order tensors; the constitutive relations (1.2)
follow from the set delineated in (1.3) when, among other assumptions, it is
assumed that the functionals D,B are linear and isotropic.

In [1] we have studied various consequences of the constitutive hypothesis

(1.2) under the simplifying assumptions that a, = bj = 0, j 2 1 and that the

3

past histories of the electric and magnetic fields are of the form

(O = cREI< Nt
E(x,t) =
(__, ) Eh(i't)’ _th< t< 0

(1.4)

for some th>-0. In particular for memory functions ¢,V which are sufficiently

smooth on (—th,w)we have the following
Lemma [1]: The evolution of the electric displacement field D(x,t) in any
holohedral isotropic dielectric (which conforms to the constitutive hypothesis

(1.2) with a, = bj = 0, j21 and past histories of the form (1.4), for some

3

t,> 0, is governed by a system of damped integrodifferential equations of the

h

form




e A )

. Gl »hw :
ft 2 bO 2
(1.5) + _thgi(t-T)Di(T)-(;;)¢(t-1)v D, (1)3d1

=0, in @, i = 1,2,3, B bolaat(O)

provided.B; (5,-th)19 in  and W(O)?O. In (1.5) ¢(t) is given in terms of the

memory function ¢(t) via the recursion relations
(o]
®e) = I (D" ¢"(e), t20
n=1

o' = ot o), 4% = [ ¢ (-0 (0

for n22, with a similar definition for y(t) in terms of y(0). We assume that

ao> o, b°> 0; it can be shog; that ¥(0) = -b;lw(O) and thus we assume w(O)r 0

so that the coefficient of —3% in (1.5), i.e., Y(0) >0.

Remark The system of integrodifferential equations (1.5), for the components

of the electric displacement field, is obtained by combining the constitutive
relations (1.2) (with aj = bj = 0, j21 and past histories of the form (1.4)) with

the inverted constitutive equations, giving E and B in terms of D and H, respect-

ively, Maxwell's equations (1.1), and the vector identity

Ayﬁi) = grad (div !ﬁi)) - curl curl !ﬁl)
which is valid Vx € Q for any vector field V(+) which is sufficiently smooth on
0; the constitutive relations (1.2) are inverted by the usual technique of
successive approximations. For the details of the computation we refer to

3,531,




We now formulate, in a bounded domain S~}D§l, an initial-history boundary

value problem for the components of the electric displacement field: Let

a 523 be a bounded comain such that Qc{l; we assume that the region ﬁ/Q is
occupired by a perfect conductor so that D=0 in /9 (161,§10.5). oOn 39,
D(x)*n(x)=0(x), x ¢ 3Q, where n(x) is the unit outward normal to 9 at x and
0(x) is the free charge density at x ¢ 9{l. Now let EZ pe any bounded domain
in R3 satisfying QCEliﬁ; then for (x,t) ¢ 83:2 x (-th.a‘), D(x,t)=0. We have,
or course, equations (1.5) in & x (0,®) and D = 0 in EZ/Q x (-th,w). In con-
junction with these equations and the prescription of the past history for

(x € Q) given by

0,=- ™ <t< -th

(1.7a) D(x,t) =
_D_h(lst) ) -thst< O!

we consider initial data of the form

(1.7b) D(x,0) = D_(x), x € Q

D, (x,0) = D,(x), x ¢ Q

where D (x)=0 in Q/Q, D, (x)=0 in /Q and we assume that fn(_lgo)i(po) ;4% # 0.

The situation is depicted below
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Den=¢ 2=0on
on 30 90 x [-th.w).

N
Do

D satisfies (1.5
in O

Q/9 1s a perfect conducto

2. The Initial-History Value Problem in Hilbert Space

We introduce three spaces: H = Lz(ﬂ)(l) with the standard inner-product

Ly ciG M

2

the Sobolev space H+ = gé(ﬁ) with inner-product

av1 3"1
TR AR R, 2
—o J 3
and H_ = ﬂ-l(ﬁ). the completion of C:(ﬂ) under the norm
Bwi awi "
| - = r e \] N m— —
Hylly= sup, [|/g vywdx|/ (g 5= 5= d0)*]
- weH 3 3

1

It is well-known that ﬂ- = (gifl(dual space) that Ei(ﬁ) < Lz(i), both topologically

D L,@ = @,@)°, e, veL, @ 1£f v, ¢ L,@, 1 = 1,2,3 with sinilar

interpretations for Ei(ﬁ). ﬂ-l(ﬁ) introduced below.




and algebraically, and that E;(é) is dense in Lz(ﬁ); we denote the embedding con-
stant for the inclusion map i :gii(ﬁ)fgz(ﬁ) by y, so that I]!J]L (5):;y||!||H1(5),
vveH:(R). Operators Nel (@) H1() and K ¢ Li((-= = )L (B:(@) i @)

- -0 T TRy = - R b e :
where Ls(gi(ﬂ);ﬂ—l(ﬂ)) denotes the space of all bounded symmetric linear oper-

ators from gi(Q) into gﬁl(Q), may now be defined as follows: for any g}sgi(ﬁ).

t ((-m'm)
. 2 55 4
(§_\L)i = ?(0)[cov vi—;i]’ <, :bO/aoW(O)
(K(E)v) = ¥(B)v, - (=2)o(t)V2v
Sl i ag i
where the derivatives are understood in the distribution sense, i.e., Vzvi-
vy € ‘Lﬂ(ﬁ) is such that for any ¢ € q:(é)
¢ avi
Jg dyax = =/ 5;; 5;; dx.

The symmetry and boundedness of N and K(t), t € (-«, =) as maps of Ei(ﬁ) into E-l(ﬁ)
will be verified in §3. If we now set '=¥(0)> 0 then with the definitions of
N,K(t) as given above the initial-boundary value problem (1.5)-(1.7) is equivalent
to the following initial-history value problem in Hilbert space: find u € Cz([O,w);

B (@) such that u, e (L0, =5 EL@), v, € (00,87 (@) ?) ana

e Zee

t
Yoo + I‘P_t = N {m_l_(_(t—T)_g(T)dT-g. t>0

(2.1) u(0) =y, u (0) =y  (u, v, € H@®D)

8y ~WeX wuk,

gh(r), -th$T< 0

u(t) =

In general, without definiteness assumptions on the operators N and K(t), te (-%®),
this abstract initial-history value problem for u(t) is ill-posed. However, we will
show that with no definiteness assumptions on N and only mild assumptions on K(t),

i.e.,

(2) wu:lo,d~ H1 satisfying these smoothness assumptions will be called a strong
solution of (2.1).




e i

Remarks We offer below some comments regarding previous work related to one or

e .20 > 2 0, v ¢ BAD
=8 — o= -0

A2] K(t) = Hg(t)liLs(ﬂi;g—l) satisfies K(+) ¢ L,[0,%)

A3] k(e) =/||k | @y :n L)) dt satisties K(+) e L,00,%) with
- e i
K(0) = 0.

where 51 denotes the strong operator derivative of K, it is possible to derive

asymptotic lower bounds for the EQ norms of solutions u to the system (2.1)

which lie in classes of bounded perturbations N of the form
. 1
(2.2) N={v e c{l-t,=);E ) | sup ]I_\_r_HBl < N}
[-th’m) -0

for some N > 0. Our results are obtained by using a mixture of logarithmic con-

vexity and concavity arguments which have been used sucessfully now for over a
period of more than a decade in order to treat problems of uniqueness, stability,
and continuous dependence for solutions to ill-posed initial-boundary value
problems and initial-history boundary value problems associated with various
linear and non-linear partial differential equations and integrodifferential

equations [see [7]-[93,[101{12], and the references cited therin]

more aspects of the current investigation:

(i) Growth estimates for a class of damped linear integrodifferential equations

associated with holohedral isotropic dielectric response have been obtained in
[1] via a concavity argument; the nature of the estimates precludes our obtain-

ing from them any information concerning the behavior of solutions as t++ .

TR A Y. IR

More specifically, we have shown the following: For any o >0, let Ea be a strong

solution of (2.1) with ua(O) = auo, where it is assumed that <Eo’zo>i> 0,
=2
<y, Ny, 19 e e B [ct’h_!(_(-"t)}_lh(’t)<‘h’>-1__:2 < 0, and that K satisfies hypotheses Al,




_9-
A2, and f ||k ||L (H @ ¥ ( ) < o Then, provided ||u Il % <uav o
Xu ,v —2 =2
1 0’0o
and T>5dn it follows that
2 v > -Fl!u \l
~0'o
,~u AE K (- -0Y, (1)dzr >L,,| b
(2.3)  sup ||g°(t)|l 1 < 2 e va for each
'3 i
-t T S.) Y i ;
3 o)
a 2 [|g°||£7/ u sNu lo where

e = MR, ety w72 00y sl 1% . .
v ™ S gl @ RO oy w7y
T LR O @@y, n ™ @)ar.

The estimate (2.3) does not require that u belong to a class of bounded pertub-
ations of the type specified by the set N defined in (2.2) but it is limited to
<u{3)An estimate completely anologous to (2.3) is available for the undamped
situation, i.e., (2.1) with I' = 0, but can not, in view of the hypotheses which
led to (2.3) for the undamped situation, be obtained by simply setting I' = 0 in
those hypotheses. The initial-history value problem (2.1), with I' = 0, is
shown in [3] to model the evolution of the electric displacement field D in a
nonconducting dielectric of Maxwell-Hopkinson type and an estimate of the type
(2.3) is obtained there under the assumption that'rz’,lgo,Iiﬂ .

Q\Eo.v >

L

Finally, we indicate that in contrast to the various concavity arguments employed

in [1] and [3], for the damped and undamped integrodifferential initial-history
value problems associated with (2.1), growth estimates for solutions to these

respective problems which lie in bounded classes of perturbations, of the type

(3)

The estimates in [1] and [3] are obtained by using a modified concavity
argument.

s b i

B e it e LB U

s

sty o i

2 L e T Y e —————

e



3O

N, can also be obtained by using logarithmic convexity arguments, i.e., [4];

the nature of the logarithmic convexity argument, however, involves not only a
restriction to classes of bounded perturbations but also a restriction to finite
time intervals of the form [0,T), T<<«, and requires, in addition, the stonger

hypothesis that

~<v,K(0)y 3 2 |y lfll, VveH ()
=2 -0 -0
with

k2yT sup |IK || ulion.u-l,0
oy Vel gl

Logarithmic convexity arguments have also been employed in [8] and [9], to
obtain uniquenesz and continuous dependence theorems,as well as growth estimates,
for solutions to ill-posed initial-history boundary value problems in isothermal
viscoelasticity, and in [16] to obtain growth estimates for solutions to a class
of nonlinear integrodifferential equations in Hilbert space.

(ii) Several authors ([13],(14), and the references cited therein) have studied
the asymptotic behavior of solutions to initial-value problems associated with

damped evolution equations of the form

(2.4) u

U, + Ay +Bu =0

where u:[0, > H, a real Hilbert space with inner-product <, > and natural norm
[|(*)||; the usual assumptions which are made are that B is in L(H;H) and satisfies

a coerciveness condition of the form
-
(2.5) <v,Bv>2 A||v]|", A>0, v € D(B)

with 5(2)- H. When the linear operator A satisfies <Av,v>2 0, and é”l exists (the

Py

SRR it o

i I AT i e




strongly damped case) it is well-known that the energy

E=i(] fu | 1* + <u(®), B u(6))

A -1
decays at a uniform exponential rate; even if A does not exist (the weakly

damped case) it can be shown that in certain circumstances lim E(t)=0, In {15]

t-OCX

we considered the system

2 o o> e Q = s <t < &
(2.6) s + Fug Nu 0, I'>0, Ost
o Q }
u (0)y=au_, u (0) = v  (u ,v e D))

o Z 2
with >0 and u> € C([0,9;D(N)). If <v,Nv><-A||v||",A>0,Vv e D(N). (the
hypothesis corresponding to (2.5)) asymptotic stability in the energy norm follows
immediately; however, it is shown [15] that if N is symmetric, <v,Nv>20,
" . " A D (N A A .
YveD(N), and there exists an element u_¢l(N) such that <u ,Nu >>0, any solution
= o o s -v —o l
A
of (2.6) having the requisite smoothenss must satisfy, for g W and o

sufficiently large

2.7 1 |Jo® 02’8, | 2@ D

t>x

A
where Eo(a,T) depends on u vy and satisfies lim ZO(Q,F =0 (i.e., solutions
>

are asymptoically bounded away from zero, for a sufficiently large, no matter

how strong the damping is. The asymptotic lower bound (2.7) is obtained in

[15 by employing a mixture of logarithmic concavity and convexity arguments

to establish the estimate A

2 2 A 2 Sattat -T't,

(2.8) @) 220?12 ] Pexpl (5 T 28 AT D)
“!__Oll

for all t20,a 2 HXOI I/"(?o’ﬁ“ >, and does not require that _Lla be a priori res-

tricted to lie in a class of bounded perturbations; the estimate (2.8) may be

CUTiAy, + 0I5 TN~ B Iih
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easily extended tc the case where Nel (H+.H_), ua:TO,“O+H+ where H+,is a second
s w3

Hilbert space with inner product <,> and natural ncrm ||(-)||+ such that

+
H+£;H, both algebraically and topologically, and H_ is the completion of H under

the norm ||(+)||_defined via ||w|| = sup ligingl.
Vel HY_H+

In particular, the system (2.1) reduces to (2.6) if K=0, Eo*ago, and we identify
Hf&z(é) H+=§i(§), H_%ﬂ-l(ﬁ). For the system (2.1) we shall derive asymptotic
lower bounds of the form (2.7) without introducing a one-parameter family of
initial-data functions of the form ago, and without making any definiteness
assumptions on N. For definiteness hypothesis on N,K(t), which imply the exist-
ence, uniqueness, and asymptotic stability of solutions to initial-history value

problems of the type (2.1) we refer the reader to [16] and [17] and the references

cited therein.

3. Asymptotic Lower Bounds for Solutions

We want to show that, under an appropriate set of circumstances, solutions
ueN of the system (2.1) are asymptotically bounded away from zero, in the L,
norm, even as the damping term [+ +®. To this end we will establish the follow-

ing:

Theorem Let ueN be a2 strong solution of (2.1) where EgLs(gi;ﬂ-l) and
2 1 -1
KeL"((=> 95 L (B ,H 7)) such that hypothesis A1l,A2, and A3 (of §1) are satisfied.

If E(O)=%|lxolli-<go,§g°>] < 0 with
2

]

3 St 5
(3.1) | EC0) | >3 v [llkl‘L1[051)+“K‘|L1[0,m)]

then for all t, O<t<e, and any £ >0, F(t)=||g|fi satisfies the differential
=

inequality
L {_‘+1 l%
3.2 - (—EE = '
(3.2) FF 28+1)F 2-T'FF
b e ke i s RN s
. T
sECuse Ty 'L'\‘A ..n Ve :.1\.1‘?.0' l.'u',‘uh'vth l'mn‘lc ceed)

I PUPTPUIN PG PSP assn. s 2 aPead PSS AN l B2 ALY INUTIALIET e

.




-] 3~

t L

' L]
Proof. From the definition of F(t) we have F =2<u,u > and F =2 I‘-’tl ]i +
e

kg’gtt>l. . Direct computation then yields
=2 (N} "5 2 . 2
(3.3) T a(BEE wARs Rt a6 s, ] )
i
where
2 2 2
(3.4) Sg(o)=|ul |} ] -<uu> =0
l =2 =2 =2
7 by the Schwarz inequality. Therefore, for 0<t<«, and any >0
R '?
(3.5) FF -(B+1)F 221"'GB

where, in view of the integrodifferential equation (2.11) for u(t)
2
(3.6) Gg(t)=u,Nu 12-T<3,gtf£2-(28+1) Hu, | l£2

—<u, ft K(t-1) u(T)dT>L
-— - OC — —_— —2

\J
As F (t)=2<5’gt> we may rewrite (3.6) as

L
=2
(3.7) Gg (t)=- LF'-(2i3+1)[]|u |]2 ~<u,Nu>_ ]
i B 2 S Tk
-2f<u,Nu> -<u,j't K(t-T)u(t)dT>
__l‘.z = e ) Ez
=- gF'-2(28+1)E(t)-23<u,_N£>L
o=

t
‘~g.f_w§(t—'r)_g(r)d'r>kz

in view of the definition of E(t). Taking the _I_,_2 inner-product of (2.11) with

u, and integrating we easily obtain

t 2
(3.8) . E=E©-T/ ||y | lksz

t T
_.I"._><x_1,r,f_¢o R(T-A)u(A)dx 1241

and substitution into (3.72) then yields




(3.9) 6, (t)2- L5 '-2(2841)E (0)-28<u, Nu>
gte 3 LNy

+ 202841) < ST R(T-Du0)AR | dr
=2

it <E’f_t_m E(t‘T)E(T)dT>L ’
=2

2
where we have dropped a non-negative term proportional to IEIIETIIL d1. If we

now take the £2 inner-product of (2.11) with u(t) and use the definition of F(t)

we obtain the identity

T 1" | 2
(3.10) 5F o+ 5F =||u | IL2+<2'B£>L
= My
- <u,ft K(t-T)u(t)dr>, .
=2 o= —_ Lz
which implies that
Tt 1 2
(3.11) -26<u,Nu> = -BF -BTF +28||u, ||
Ll Setin,

-2B< u,ft K(t-T)u(1)dT>
ol S LRVRP < LQ

Substituting from (3.11) into (3.9), collecting terms, and dropping a non-

negative expression proportional to lfgtlfi now yields the following estimate
=2

for GB(t):

(3.12) Go(t)2~T (BH5)F -BF  -2(28+1) (0)

- (28+1)<y, /T R(t-Th(T)dT>,
Ly

+2(28+1) S <u 0L 5(1-A)E(A)dA>L2d1

Substitution for GB(t) from (3.12) into the differential inequality (3.5) now

produces




‘3 A}
(3.13) FF -(8+1)F 2-2T'(B+%)FF -2RFF

=-4(2F+1) E(O)F

—2(26+1)F<1_1,ff « K(t-T)u(1)d7>
=2
+4(28+1)Ff§<9,r,fim K(t-Du)dr| do

which is equivalent to

ll- +1 l’ﬁ- v
(3.14) FF (EEII)F 2z -T'FF

~4FE(0)-2Ru, /T K(t-T)u(1)dT>,
=
t 1
+4F/<u ,/  K(1=A)u(A)dAr>_ dt
0 Tr*am =1L L,
or, in view of our hypotheses that E(0)< 0

'3
(3.15) FF -(—2—2%)1-“ ><TFF

+ 2F2[E(0) <, /T | K(t-Du(n)dT>,
=

t t
+ 2fo<21_,f_w _IS(T—)\)_I_J_(}\)dT>£2dT

We now seek to bound the two expressions involving K(t) on the right-hand side

of (3.15). Let us first note, however, that as

’_[F

(3.16) “u, /L, K(-Dudr>, =
=
u(0), /1 R(T-Duars
5 =2

Jn.

(=%

T
T
"E(T)’f-a~51(1‘*)3(k)dkfgz

- u(1),K(0)u(1)> |
=2

(3.15) has the equivalent form




-2
(3.17) FF 28+l)P Ya-rrr'

+ 2F[2]E(0) I—ZJ’:<_\_.|_(T),_IS(O)3(T)>L d1

-2
t £ o s
- 2f63!(7)'f_u\bq(T’A)E‘A)dA'EZd
- 2<go.fgu,§(-1)5(1)drj£2
+<3,,r‘ mE(t-T)u(T)dTv‘L J
b X =2

from which it follows that

(3.18) FF - (‘2'37?*' "% rrr’
+ 2F(2| EO)] -2 u_, /2 5(-1)3(1)&12
- zf}g(r),fjwgq(x-x)g(x)abkzdr

+<u, st K(t-Du(n)dt 'L,

by virtue of hypothesis Al relative to K(0). We now have the following estimates

for the integrals appearing on the right-hand side of (3.18):

(1) kgfﬁwﬁbﬂgUMDLl
29
SHEOHL  HBCED 11y e ]| !
=2 Ls —o =
H
3L PR R T S K(-)H o1 9T

sup 2,
SYGoe o 10O [ [2)°S RO ] (2 g=1y87
([th.) B/ "o L(H_,H )

2 _
sy N/ Ih(T)IILs@‘l)'E 1,dt

therefore,




(3.19) ~2u /0 !(_(-T)g(r)dvkz

-2¢N f“llx(:)llu plydT

(11) l<u, /L R(e=Du()dr> |

i

-Hg(t)Ixszfml B 1l gy ao]] e

—0
v (, BUPa)Hu(t)H 1)/ IlK(t-T)IIL 1 m1ydn

é:
|

cosup | u(e) ] 4132, |,
=Y\ = H fl“_\_(p)ll 1 -1.dp
( [=t, ) o L (H B ™)

A

ysz: IR ]} gt yoLyde
s o'~

and, therefore, for O0<t< «,

(3.20) <u,/_, K(t-T)u(v)dr>
i -2

2 o0y -
2 - YN follh(t)”Ls(gisH l)dT
Finally, we have

(111) |7eu() /1 K (=Du)dr> dr]
Ly

sS7 eu(o) .f_thg,t(r-ng(x)ax >L2|<n

EAUMOIN fI LML e N ITCSI R RS L
L Senn o B e

< Y( sup ”u(t)ll 1) f f IIET(T-A)HLS(HI H =1.d\dT
-0

-t om) )
-y | u(t)||,1 ® T4t
(o, O TR 2 ol s @11y g1 ot o
<y N2 (R(!')|T+th)d1

72 L - d
=y N fo k(T+th) .

2 A ~
=y 8 /T Kydr <y 82| |R] L (0,%).
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where K(A)=/| l_lSA(A)I ILS(Ei’H-l)dA. Therefore, for 0<t< o

(3.21) 2/ u(),sT, B iRl &

2 A
> 2| R11y, .09

Combining (3.18) with (3.19)-(3.21) then yields the estimate

(3.22) FF’ ‘ngu”’ =TFF
+ 2F[2|E(0) | - 3yN? KT ropy* IR, ro, 097

which, in view of our hypothesis relative to |E(0)|, implies the stated

inequality, i.e. (3.2).

Corollary 1. Under the same conditions which prevail in the Theorem above

s e

a2 > (o |12 e ( il

(3.23) lim ||u u xp| ————=
P L, '—o'L Il |u | |2

-0 LQ

Proof: In (3.2), which is valid for all § > O,we take the limit B -+ 0+

and obtain
e 2 '
(3.24) FF -F 2-TFF , 0<t< o,

Direct integration of this differential inequality then yields the lower

bound

(3.25) F(t)>F(0)expl (s " 5)}, DB s

(7.
which, in turn, implies that

F'go)
(3.26) tijfl F(t)zF(O)exp(rF(o)

This last result is equivalent, via the definition of F(t), to (3.23).

Q.E.D.
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A A better lower bound and asymptotic estimate (as t++x) may be obtained

with a little further effort, namely, we have

Corollary 2. Under the same conditions which prevailed in the above Theorem, §

it follows that for all t >0, and any a, % <a <1,

2(1-a)<u _,v > 4 1-u
(3.27a) Hallf 2l lu 117 Js 220 Lij1-eT"
L

so that, as t*t+ «

1
2(1-)<u _,v >
(3.27b) un w1 2llu ]l 1+ ——F=2 1,1
t>4x -2 =2 rl'u H

Proof. For any a >0

(3.28) rrlm® ) w (l-a)F—u-l(t){F(t)F"(t).ap ")
and from (3.2) with a = —2%
(3.29) Q-F 2 1rr " o T 2 (L) F O TR
i = -I'(1-0)F %F'
Therefore for ou-?g%
(3.30) (P " (£)2-T (1-0) FOF ' .,

0 i b &)

Let G(t)-F(l-Q)(t) and H(t)-G'(t); then (3.30) implies that H'(t)Z-I‘H(t) and

an integration produces
- ’ ¢  -Tt
H(E)2H(0)e F+s G (£)26 (0)e

A second integration then yields

T —

.y

:!




_:O-

-

G(r)26(0) + &4& (0) [legT ¥]

' which is equivalent to

-Q '
! (3.31) P (0)2p 10 ) + GWE_OF O, Tt
(1-a) Q )F 0) 4
P o)1 4L (€ hes

from which the stated estimate (3.27a) follows after taking the (l-a)th root on
both sides of (3.31) and using the definition of F(t); we note that (3.27b)
] follows directly from this last estimate and that a=f+1/2R+1 takes on all

values in the in the interval (%,1) for 8>0.
Q.E.D.

Remark Clearly as B*0+,a*1; taking the limit in (3.27b) as a*l and using the

elementary fact that
]
X X

lim [14+)x] ‘= ¢

: A+0

we recover (3.23) from (3.27b).
Remark Clearly both (3.23) and (3.27b) imply that

lim 1lim Ilu(t)ll ‘llu Il
T oo

so that the L, norm of u is bounded from below as t++~ even as the damping be-

2
i comes arbitrarily large; this is the analogue, for the ill-posed integrodifferential
initial-history value problem (2.1), of the asymptotic lower bound obtained in

[15).

Remark We comment here on some of the conditions imposed by the hypothesis of

the Theorem on the electromagnetic memory functions ¢ and Y which appear in (1.5)




and serve, therefore, to define the operators N and K(t) we have (4)
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bo 2
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i b
(3.33) )| [v] 17 +<20 ||y||21<0
i —o

1f ;i.‘(O) 2 0 then via the embedding of gi(f?), into LZ (52)

follullf < Yol
= -0

and (3.33) will be satisfied, for all v K. (), provided

2+ bo aO 2
Y ¥(0) + (a—)¢(0) = (@ e ‘I’(O)S-(b—')Y ¥(0)
o (o]

Thus, as far as hypothesis Al goes, we have

o a e
(3.34) {¥(0) 20, 8(0) - Y¥(0)) =
o]
1 -~
-<1,§(0)\_7>_I:§‘ 0, VveH ()
I In view of (3.33), the same conclusion obtains if ;};(0) <0, 9(0) <0. Also
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(3.35) IR ||| (42 571y= su :
8 —o’— veH | |v]],1
=0 =t oH
—o
Ifg‘vifg(t)vildﬁl
= su
I o
El %)
To be consistent with the formulasion of the initial-history boundary value problem
in §1 we have, in fact, v = 0 in (}/Q in the computation below.




li’.t)llxll <~>omnv"21
0

= Ssu 2
vl Hxll,,l
. 4 (&)
Felil \
< sup = | () ¥(t)
2518 T %
B,

% b
e¥) | + o) |
o

Clearly, hypothesis A2 will then be satisfied if f:lﬁ]dt< @, and f“]¢(t)|dt< oo
o

1.e.

(3.36) {li’leLlfo.w), [¢]eL 00,2 +K el (0,9,

A computation entirely analogous to (3.35) yields
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and, therefore, for hypothesis A3 we have
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(3.38) # .
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Finally, for any xggé(ﬁ), we have
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1f é(O) satisfies (3.41) then
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and (3.1) is equivalent to requiring that
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by (3.35), (3.37), and the definitions of K(*) and K(*).
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